ВХОДЫ НА ПРОБОЕ ВОЛАТИЛЬНОСТИ
Три следующих теста исследуют модели, основанные на пробое волатиль-ности, в которых производится покупка при подъеме цен выше верхней границы волатильности или открытие короткой позиции, когда они опускаются ниже нижней границы волатильности. Когда волатильность растет, границы расширяются; когда она падает, они сужаются. Точка равновесия, относительно которой строятся границы, может быть последней ценой закрытия, скользящей средней или каким-либо другим показателем текущей цены.
Тест 7. Пробой волатильности с входом на открытии следующего дня. Эта модель покупает при открытии следующего дня, если сегодняшнее закрытие превышает верхнюю границу волатильности, и открывает короткую позицию, когда цена падает ниже нижней границы. Для определения верхней границы волатильности к текущей цене (или ее скользящей средней) следует прибавить ширину среднего истинного диапазона, умноженную на значение параметра bw. Ширина среднего истинного диапазона рассчитывается за последние atrlen дней. Для расчета нижней границы волатильности из текущей цены вычитают ширину среднего истинного диапазона, умноженную на bw. Показателем цены служит malen - экспоненциальное скользящее среднее цен закрытия. Если длина скользящего среднего malen равна единице, то этот показатель становится равен цене закрытия торгового дня, когда имеет место пробой.
Поскольку модель на пробое волатильности имеет три параметра, для данного теста был использован метод генетической оптимизаци
...[ ... ]
Тест 8. Пробой волатильности
Тест 8. Пробой волатильности с использованием входа по лимитному приказу. Эта модель пытается открыть длинную позицию на следующий день после пробоя с помощью лимитного приказа в случае, если цена закрытия торгового дня была выше, чем текущей уровень цен плюс ширина среднего истинного диапазона. Текущая цена определяется экспоненциальным скользящим средним с периодом malen, рассчитанным
по ценам закрытия. Множитель ширины среднего истинного диапазона обозначается как bw, а количество дней, по которым производится расчет среднего истинного диапазона, обозначено как atrlen. Цена для лимитного приказа, размещаемого на следующий день, приравнивается к средней цене торгового дня, когда произошел пробой. Оптимизация проводилась так же, как и в тесте 7.
Для всех сочетаний параметров длинные позиции были выгоднее (или хотя бы менее убыточными), чем короткие. Лучшая эффективность в пределах выборки была достигнута при параметре bw, равном 3,7, периоде скользящего среднего 22 и периоде среднего истинного диапазона atrlen 41: при этих параметрах годовая прибыль составила 48,3%. Вероятность случайности прибыли составила менее 0,02% (после коррекции для 100 тестов- менее 13%). В пределах выборки проведено 1244 сделки. Средняя длительность сделки составила 7 дней. Система провела 45% прибыльных сделок со средней прибылью в сделке $3616. И длинные, и короткие позиции были прибыльными.
...[ ... ]
При таких статистических данных
При таких статистических данных можно было бы ожидать прибыльной работы вне пределов выборки, но этого не случилось. Вне пределов выборки модель несла тяжелые потери. Капитал рос с начала выборки до августа 1990 г., медленно дрейфовал до мая 1992 г., заметно вырос к июню 1995 г., а затем снижался. Эти результаты показывают главным образом снижение способности простых моделей пробоя приносить стабильную прибыль в течение долгого времени.
Все валютные рынки были прибыльными как в пределах выборки, так и вне ее, за исключением британского фунта и канадского доллара. Это показывает эффективность подобных систем на трендовых рынках. Как ни странно, рынки валют с максимальной прибылью в пределах выборки не обязательно были самыми прибыльными вне ее пределов. Это показывает, как важно вести торговлю корзиной валют, не отбирая инструменты по результатам исторических данных, если используется система, основанная на пробое. Хотя эта модель плохо работала на рынке нефтепродуктов, на рынке кофе и леса результаты были ошеломительными (более 65% и более 29% соответственно и в пределах, и вне выборки).
...[ ... ]
Тест 9. Пробой волатильности с ис
Тест 9. Пробой волатильности с использованием входа по стоп-приказу. Эта модель входит в рынок сразу же после точки пробоя при помощи стоп-приказа, включенного в модель входа. Преимущество модели в том, что вход производится немедленно; недостаток же состоит в том, что вход может быть достигнут не по самой выгодной цене, как в случае лимитного приказа, поскольку происходит исполнение множества стоп-приказов, расставленных на общеизвестных уровнях поддержки/ сопротивления. Во избежание множественных приказов в пределах бара использован стоп-приказ на основе последней цены закрытия, как и в тесте 6. Модель со стоп-приказом на пробое волатильности производит по
купку, когда цены поднимаются выше верхней границы волатильности, и открывает короткую позицию, когда они опускаются ниже нижней границы волатильности.
Оптимальные значения для трех параметров модели исследовались с помощью генетического оптимизатора, встроенного в C-Trader toolkit, предлагаемый Scientific Consultant Services, Inc. Минимальное соотношение риска/прибыли было достигнуто при множителе ширины среднего истинного диапазона 8,3, периоде скользящего среднего 11 и периоде среднего истинного диапазона atrlen 21; при этих параметрах годовая прибыль составила всего 11,6%. В пределах выборки проведено 1465 сделкок. Средняя длительность сделки - 6 дней. Система провела 40% прибыльных сделок со средней прибылью в сделке, равной $931. Только длинные позиции были прибыльными во всех комбинациях параметров.
...[ ... ]
Вне пределов выборки
Вне пределов выборки и длинные, и короткие позиции были убыточными. Из 610 сделок только 29% были прибыльными. График изменения капитала и другие результаты тестов показывают, что ухудшение вне пределов выборки было гораздо сильнее, чем у других моделей, основанных на пробое волатильности, использующих лимитные или даже рыночные приказы.
Может ли избыточная оптимизация объяснить быстрое ухудшение результатов вне пределов выборки? Нет. Оптимизация может заставить изначально плохую систему показать хорошие результаты в пределах выборки. При этом эффективность системы вне выборки не изменится. Оптимизация часто меняет таким образом модели, которым не хватает реальной достоверности и которые во многом случайны. Чем мощнее реальная модель, тем лучше она будет работать после оптимизации. Как и в предыдущих примерах, эффекты подгонки под исторические данные - не единственная причина провала; эффективность снизилась задолго до окончания периода выборки. Ухудшение эффективности в данном случае можно приписать как излишней оптимизации, так и продолжающемуся росту эффективности рынка.
Модель в пределах выборки была выгодна при работе с британским фунтом, немецкой маркой, швейцарским франком и иеной; вне выборки все рынки, кроме британского фунта, дали положительные результаты. Если бы велась торговля всеми валютами, кроме евродолларов и канадского доллара, то в обеих выборках была бы получена солидная прибыль; евродоллар понес большие убытки ввиду проскальзывания и входа по неоптималь
...[ ... ]