Энциклопедия торговых стратегий
Энциклопедия торговых стратегий














Результаты тестирования

Результаты тестирования нейронных выходов на различных рынках В табл. 15-3 приводятся результаты торговли с использованием оптимальной МССВ и дополнительного нейронного сигнала выхода на различных рынках. Было использовано оптимальное значение порога (54) согласно табл. 15-2. Значительная прибыль как в пределах, так и вне пределов выборки была получена только на рынке живых свиней. Ряд рынков (например, немецкая марка и иена) показали значительную прибыль в пределах выборки, но были убыточны вне ее пределов. В длинных позициях рынки NYFE и неэтилированного бензина были прибыльны как в пределах, так и вне пределов выборки - это можно объяснить и статистическим артефактом, поскольку в пределах выборки в длинных позициях многие рынки приносили прибыль. Таблица 15-1. Эффективность базовой МССВ, предназначенной для использования в сочетании с нейронной сетью, прогнозирующей сигналы выхода ...[ ... ]
МЕТОДОЛОГИЯ ТЕСТИРОВАНИЯ

МЕТОДОЛОГИЯ ТЕСТИРОВАНИЯ ГЕНЕТИЧЕСКОГО КОМПОНЕНТА ВЫХОДОВ Поскольку практически очевидна необходимость отдельных наборов правил для длинных и коротких позиций, мы провели два теста. В первом тесте система генерирует случайные входы в длинные позиции (сигналы к открытию коротких позиций игнорируются), а для выходов применяется МССВ, а также отдельные правила, которые разрабатываются генетическим алгоритмом. Во втором тесте все входы в длинные позиции игнорируются, открываются только короткие позиции. Делается попытка разработать правила, хорошо работающие в качестве дополнения к МССВ для коротких сделок. static void Model {float *parms, float *dt, float *opn, float *hi, float *lo, float *cls, float *vol, float *oi, float *dlrv, int nb, TRDSIM &ts, float *eqcls) { // Выполняет случайные входы с модифицированным стандартным выходом // и с дополнительным генетически развитым "сигнальным выходом" // File = x21mod01.c // parms - набор [1..MAXPRM] параметров // dt - набор [1..nb] дат в формате ГГММДД // орn - набор [ 1..nb] цен открытия // hi - набор [1..nb] максимальных цен минимальных цен цен закрытия значений объема значений открытого интереса средних долларовой волатильности й в наборе данных класс торгового симулятора уровней капитала по ценам закрытия // объявляем локальные переменные static int rc, cb, ncontracts, maxhold, signal, ranseed; static float iranstp, ptlim, limprice, stpprice, entryprice; static int entryposted, entrybar, exitsignal, model ...[ ... ]
10 лучших решений

10 лучших решений с базовой стратегией выхода В табл. 15-4 приведены 10 лучших значений для длинных и коротких позиций. Обозначения в таблице: НОМЕР- номер решения, ВЕР- вероятность статистической достоверности (в этих числах пропущена, но предполагается десятичная точка), $СДЕЛ - средняя прибыль/убыток со сделки, СДЕЛ - общее количество проведенных сделок, Ф.ПРИБ - фактор прибыли, ДОХ% - доходность в процентах годовых. Лучшее из решений для длинных позиций было обнаружено в 845 поколении эволюционного процесса, а для коротких - в 1253 поколении. В отличие от теста моделей входа ни одно из генетически полученных решений не обеспечило прибыли, но, согласно табл. 15-5, сочетание генетических сигналов с базовой стратегией выходов привело к явному улучшению результатов. Правила, соответствующие хромосомам из табл. 15-4, звучат следующим образом. Правила для выхода из длинной позиции: если цена закрытия текущего дня выше экспоненциального скользящего среднего (ЭСС) цен закрытия с периодом 12 дней, но ниже ЭСС с периодом 49 дней и текущий день представляет собой новый шестидневный максимум, то из длинной позиции следует выходить. Правила, таким образом, ищут ситуацию, где на фоне долгосрочного падающего тренда наблюдается кратковременный рост цен, достигший своего максимума и готовый завершиться, после чего должно возобновиться падение - весьма подходящий момент для выхода из длинной позиции. Правила для короткой позиции гласят, что выходить следует в случае, когда цена закры ...[ ... ]
Результаты выходов

Результаты выходов по описанным правилам для длинных и коротких позиций В табл. 15-5 приведены результаты торговли с помощью 10 лучших решений (длинные и короткие позиции), использующих МССВ и генетически разработанные сигналы выхода. Входы в рынок были случайными. В таблице отдельно показаны результаты длинных и коротких позиций. Дан ные также разбиты по номеру теста и по виду выборки. Символы В и ВНЕ означают результаты тестов на данных в пределах выборки и вне предел о в выборки соответственно. СТАНД означает тест с использованием т о л ь -ко МССВ, ГЕН - тест МССВ в сочетании с генетически разработанными правилами. В длинных позициях в пределах выборки добавление правил значительно снизило средний убыток в сделке - с $ 6 8 8 до $324. Процент прибыльных сделок повысился с 41 до 43%. Годовое соотношение риска/прибыли улучшилось с -0,35 до -0,17. Вне пределов выборки эффект генетически разработанных сигналов выхода сохранился, хотя и в меньшей степени. Средний убыток в сделке снизился с $1135 до $990. Процент прибыльных сделок повысился с 39 до 41 %.Соотношение риска/прибыли улучшилось с -0,61 до -0,60. В общем, добавление генетически разработанных правил к стандартной стратегии выходов себя оправдало. В отличие от нейронных сигналов выхода эффект сохранился вне пределов выборки, т.е. подгонка под исторические данные и избыточная оптимизация не имели решающего значения. В коротких позициях как в пределах, так и вне пределов выборки отмечен подобный положительный эффект. В ...[ ... ]
ЗАКЛЮЧЕНИЕ

ЗАКЛЮЧЕНИЕ Вышеприведенные тесты продемонстрировали ряд важных фактов. Во-первых, нейронные сети вне пределов выборки продемонстрировали меньшую устойчивость, чем генетически разработанные правила. Это, несомненно, связано с большим числом параметров в нейронной сети по сравнению с моделями на основе правил. Иными словами, нейронные с е т и страдали от избыточной подгонки под исторические данные. Кроме того, было показано, что добавление сложного сигнала выхода, будь то нейронная сеть или набор правил, полученных с помощью генетической эволюции, может значительно улучшить стратегию выходов. При использовании более устойчивых генетических правил полученные преимущества сохранились и при работе вне пределов выборки. Нейронная сеть и шаблоны правил были изначально предназначены для работы в системах входов и проявили себя достаточно хорошо при генерации редких сигналов входа. В стратегии выходов были бы предпочтительны правила, генерирующие сигналы значительно чаще. Существует обоснованное мнение, что набор шаблонов правил, специально предназначенный для разработки сигналов выхода, был бы гораздо более эффективен. То же самое относится и к нейронным сетям. ЧТО МЫ УЗНАЛИ? Избыточная подгонка под исторические данные вредна не только при создании входов, но также и выходов. Сложные технологии, включая генетические алгоритмы, могут быть эффективно использованы для улучшения стратегий выхода. Даже грубые попытки улучшения выходов, подобные приведенным здесь, могут улучшить сред ...[ ... ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Hosted by uCoz