Энциклопедия торговых стратегий
Энциклопедия торговых стратегий














Оптимизация

Оптимизация под управлением пользователя Оптимизация под управлением пользователя ведется при сотрудничестве человека и программы. Как и при оптимизации с лобовым подходом, происходит испытание различных вариантов в поисках оптимального решения, но если в первом случае ведется всеобъемлющий поиск во всем множестве вариантов, оптимизация под управлением пользователя ведется, как выборочная охота, только в некоторых участках пространства решений. Замысел в том, что при вмешательстве человека процесс оптимизации способен быстро обнаружить оптимальные значения, не отвлекаясь на обследование каждого тупика. При оптимизации под управлением пользователя применяются те же самые инструменты, что и при оптимизации с лобовым подходом. Вместо единственной оптимизации по всем возможным наборам параметров проводится несколько частичных оптимизаций, каждая из которых состоит всего из нескольких тестов. Например, в каждой оптимизации будет изменяться только один параметр, или же все параметры будут протестированы с большим шагом, создавая грубую "сетку результатов". После каждой частичной оптимизации результаты анализируются, и затем проводится следующая частичная оптимизация. Таким образом, процесс приводит к обнаружению желаемого решения. Достичь успеха в оптимизации под управлением пользователя можно только при наличии серьезных знаний и опыта в проведении подобных исследований. При соответствующем навыке и опыте оптимизация под управлением пользователя может быть чрезвычайно эффективн ...[ ... ]
Генетические

Генетические оптимизаторы Представьте себе нечто, способное решить все проблемы, связанные с созданием человека - нечто, представляющее собой вершину всех методов оптимизации и решения задач. Что это такое? Известный процесс эволюции. Генетические оптимизаторы пытаются использовать часть этой невероятной способности к решению задач при помощи грубой симуляции эволюционного процесса. По параметрам общей эффективности и размаха решаемых программ никакой многоцелевой оптимизатор не превосходит хорошо написанный генетический оптимизатор. Генетические оптимизаторы являются стохастическими в том смысле, что они используют в работе случайные числа. Может показаться невероятным, что бросание кубиков помогает решать задачи, но при правильном подходе это так! Кроме случайности генетические оптимизаторы используют отбор и комбинирование. Продуманная интеграция случая, отбора и комбинации - причина успешной работы генетических оптимизаторов. Полное обсуждение генетических алгоритмов, служа щих основой для генетических оптимизаторов, приведено во втором разделе книги. ...[ ... ]
Генетические

Генетические оптимизаторы могут иметь множество ценных характеристик, например скорость (особенно при наличии риска "комбинаторного взрыва"). Генетический оптимизатор работает на несколько порядков быстрее, чем оптимизатор с лобовым подходом, особенно при наличии множества правил или значений параметров. Это происходит потому, что, как и при оптимизации под управлением пользователя, идет фокусировка на важных участках пространства решений, а тупики пропускаются. В противоположность оптимизации под управлением пользователя селективный поиск достигается без вмешательства человека. Генетические оптимизаторы могут быстро решать сложные задачи и более устойчивы, чем другие подходы, к эффектам локальных максимумов или (минимумов) на поверхности значений функции пригодности (или затрат). Вычислительные методы плохи тем, что всегда ведут к ближайшей вершине или впадине, не обращая внимания на более высокие вершины или впадины, которые могут существовать в других местах. При этом хороший генетический оптимизатор часто находит лучшее глобальное решение - великолепный результат при сложной форме поверхности. Еще одна характеристика генетической оптимизации - то, что она хорошо работает на поверхностях с разрывами, плоскими участками и другими сложными неупорядоченными формами. Генетический метод делит это преимущество с другими неаналитическими методами - лобовым подходом, управлением пользователем и пр. При помощи генетического оптимизатора можно найти решения, максимизирующие такие ...[ ... ]
Аналитические оптимиза

Аналитические оптимизаторы Анализ (в смысле ."математический" или "комплексный" анализ) является расширением классического исчисления. Аналитические оптимизаторы используют наработанные методы, в особенности методы дифференциального исчисления и исследования аналитических функций для решения практических задач. В некоторых случаях анализ дает прямой (без перебора вариантов) ответ на задачу оптимизации. Так происходит при использовании множественной регрессии, где решение находится с помощью нескольких матричных вычислений. Целью множественной регрессии является подбор таких весов регрессии, при которых минимизируется сумма квадратов ошибок. В других случаях требуется перебор вариантов, например невозможно определить напрямую веса связей в нейронной сети, их требуется оценивать при помощи алгоритма обратного распространения. Многие методы перебора данных, используемые для решения многовариантных проблем оптимизации, применяют в том или ином виде метод сопряженных градиентов (максимальной крутизны). В общем виде оптимизация методом сопряженных градиентов ведется следующим образом. Некоторым образом выбирается точка на поверхности функции пригодности. Вектор градиента поверхности в данной точке оценивается с помощью дифференцирования функции пригодности по каждому из параметров. Полученный градиент указывает направление максимального роста функции пригодности в n-мерном пространстве параметров. В направлении градиента делаются шаги до тех пор, пока функция пригодности не перес ...[ ... ]
Затем расчет

Затем расчет градиента повторяется, движение начинается в новом направлении, и так раз за разом, пока не будет достигнута вершина, т.е. точка с нулевым градиентом. Для применения оптимизации по методу сопряженных градиентов необходимо разработать правила определения размеров каждого шага, а также правила корректировки направления, задаваемого градиентом. Примитивные версии исходят из того, что существует поверхность функции пригодности (приближаемая сходящимися степенными рядами), где имеются "холмы", по которым следует подниматься. Более продвинутые версии идут далее, исходя из того, что функция пригодности может быть неплохо приближена квадратичной формой. Если функция пригодности соответствует этому предположению, то найти решение можно гораздо быстрее. Впрочем, если поверхность функции пригодности имеет сильно изрезанную форму с впадинами и выступами неправильных очертаний, квадратичные формы часто не могут дать хорошего приближения. В таких случаях сложные методы могут вовсе не находить решения или по крайней мере работать гораздо медленнее. Тем не менее низкая скорость оптимизации не является главным препятствием на пути аналитика. Гораздо сложнее справиться с так называемой проблемой локальных решений. Почти все аналитические методы, будь они простыми или сложными, легко попадаются в ловушку локальных максимумов; при наличии множества впадин и выступов на поверхности они не могут найти наилучшее глобальное решение. Метод наименьших квадратов, моделирование нейронными ...[ ... ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Hosted by uCoz