Энциклопедия торговых стратегий
Энциклопедия торговых стратегий














ОПТИМИЗАЦИЯ И ПОДГОНКА

ОПТИМИЗАЦИЯ И ПОДГОНКА ПОД ИСТОРИЧЕСКИЕ ДАННЫЕ Еще один аспект разработки торговых систем состоит в оптимизации, т.е. улучшении эффективности систем при помощи подбора таких значений параметров, при которых система дает наилучший результат на выборке данных. Если система не работает при тестировании на данных вне пределов выборки или на реальном рынке, говорят, что при оптимизации имела место подгонка под исторические данные. Впрочем, подгонка бывает полезной и вредной. Полезная подгонка - это случай, когда модель подогнана под всю популяцию (т.е. под достаточно большую и представительную) и при этом отражает все достоверные характеристики реальной популяции в системе. Подгонка вредна, если система соответствует только некоторым случайным характеристикам, не обязательно отражающим свойства всей популяции. Разработчики недаром боятся вредной подгонки, т.е. ситуации, когда параметры, оптимизированные на данной выборке, не работают на попу ляции в целом. Если выборка была небольшой или не представительной, вероятнее всего, система будет работать хорошо на данной выборке и из рук вон плохо на другой или, что еще опаснее, приведет к потере денег в реальной торговле. Чем больше выборка данных, тем меньше эта опасность: вероятность вредной подгонки снижается, а полезной - возрастает. Все рассматриваемые методы статистики отражают это явление, даже специально предназначенные для оптимизации. Достоверно известно, что чем больше параметров подвергается оптимизации, тем больше вероят ...[ ... ]
Все это ведет к

Все это ведет к заключению, что чем больше выборка, тем более вероятность того, что найденные параметры системы будут представительным отражением характеристик рынка в целом. Маленькая выборка, скорее всего, будет непредставительной: ее кривые вряд ли будут соответствовать долговременным, устойчивым характеристикам рынка. Любая модель, построенная с использованием маленькой выборки, может быть эффективной только по чистой случайности. Будет ли подгонка "полезной" или "вредной", во многом зависит от отражения в ней случайных ценовых движений или реальных рыночных процессов, что, в свою очередь, зависит от представительности выборки. Статистика полезна, поскольку позволяет принять в расчет при оценке системы степень подгонки. При работе с нейронными сетями опасения относительно излишнего обучения, или генерализации, соответствуют опасениям относительно излишней подгонки под исторические данные. Если выборка достаточно объемиста и представительна, повышается вероятность отражения в найденных оптимальных параметрах реальных характеристик рынка, что полезно для реальной работы системы. Если же выборка мала, модель практически гарантированно будет настроена на особенности выборки, но никак не на особенности рынка в целом. Для нейронных сетей успех генерализации означает то же, что для других систем, - устойчивость в будущем и так же сильно зависит от размеров выборки, использованной для обучения сети. Чем больше выборка или чем меньше количество весов связей (т.е. параметров), тем ...[ ... ]
РАЗМЕР ВЫБОРКИ

РАЗМЕР ВЫБОРКИ И РЕПРЕЗЕНТАТИВНОСТЬ Хотя из статистических соображений разработчику следует искать самые большие из возможных выборки данных, при работе с финансовыми рынками между размером и представительностью образца существуют неоднозначные связи. Большие выборки означают, что данные уходят назад, в такие периоды времени, когда рынок был фундаментально иным - вспомните S&P 500 в 1983 г.! Это означает, что в некоторых случаях больший образец данных может быть менее представительным или включать смесь из нескольких различных популяций данных! Следовательно, нельзя забывать, что хотя цель - максимальный размер выборки, столь же важно, чтобы данные отображали тот рынок, который система должна прогнозировать. ...[ ... ]
СТАТИСТИЧЕСКАЯ ОЦЕНКА

СТАТИСТИЧЕСКАЯ ОЦЕНКА СИСТЕМЫ Разобравшись с некоторыми основными положениями, рассмотрим применение статистики при разработке и оценке торговых систем. Примеры, приведенные ниже, основаны на системе, которая была оптимизирована на некоторой выборке данных и затем тестировалась вне пределов выборки. Оценка на данных вне пределов выборки будет рассмотрена перед оценкой на основе выборки, поскольку ее статистический анализ проще (и аналогичен анализу неоптимизированной системы), в нем не требуются поправки на оптимизацию или множественные тесты. Система представляет собой модель торговли индексом S&P 500, основанную на лунном цикле, и была опубликована нами ранее (Katz, McCormick, июнь 1997). Код для системы в формате TradeStation приведен ниже: DefineDLLFunc:"SCSIWA.DLL",LONG,"SA_MoonPhaseDate",LONG,LONG; Inputs: Ll(0); Vars: FullMoonDate(O) , NewMoonDate(0) , Trend(O); { Функция возвращает дату следующей полной или новой луны ) FullMoonDate = SA_MoonPhaseDate (Date[5], 2); NewMoonDate = SA_MoonPhaseDate (Date[5], 0) ; Value1 = 0; If (Date < FullMoonDate) And (Date Tomorrow >= FullMoonDate) Then Valuel = 1; (Полная луна сегодня вечером или завтра) Value2 = 0; If (Date < NewMoonDate) And (Date Tomorrow >= NewMoonDate) Then Value2 = 1; {Новая луна сегодня вечером или завтра] If Valuel[L1] > 0 Then Buy At Market; If Value2[L1] > 0 Then Sell At Market; ...[ ... ]
Пример 1: Оценка теста

Пример 1: Оценка теста вне пределов выборки Оценка оптимизированной системы на данных, взятых вне пределов выборки и ни разу не использованных при оптимизации, аналогична оценке неоптимизированной системы. В обоих случаях проводится один тест без подстройки параметров. В табл. 4-1 показано применение статистики для оценки неоптимизированной системы. Там приведены результаты проверки на данных вне пределов выборки совместно с рядом статистических показателей. Помните, что в этом тесте использованы "свежие данные", которые не применялись как основа для настройки параметров системы. Параметры торговой модели уже были определены. Образец данных для оценки вне пределов выборки охватывает период с 1.01.1995 г. по 1.01.1997 г.; модель тестировалась на этих данных и совершала смоделированные сделки. Было проведено 47 сделок. Этот набор сделок можно считать выборкой сделок, т.е. частью популяции смоделированных сделок, которые система совершила бы по данным правилам в прошлом или будущем. Здесь возникает вопрос по поводу оценки показателя средней прибыли в сделке - могло ли данное значение быть достигнуто за счет чистой случайности? Чтобы найти ответ, потребуется статистическая оценка системы. Чтобы начать оценку системы, для начала нужно рассчитать среднее в выборке для n сделок. Среднее здесь будет просто суммой прибылей/ убытков, поделенной на n (в данном случае 47). Среднее составило $974,47 за сделку. Стандартное отклонение (изменчивость показателей прибылей/ убытков) рассчит ...[ ... ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Hosted by uCoz