Что, если распределение не соответствует нормальному? При проведении проверки по критерию Стьюдента исходят из предположения, что данные соответствуют нормальному распределению. В реальности распределение показателей прибылей и убытков торговой системы таким не бывает, особенно при наличии защитных остановок и целевых прибылей, как показано на рис. 4-1. Дело в том, что прибыль выше, чем целевая, возникает редко. Фактически большинство прибыльных сделок будут иметь прибыль, близкую к целевой. С другой стороны, кое-какие сделки закроются с убытком, соответствующим уровню защитной остановки, а между ними будут разбросаны другие сделки, с прибылью, зависящей от методики выхода. Следовательно, это будет совсем непохоже на колоко-лообразную кривую, которая описывает нормальное распределение. Это составляет нарушение правил, лежащих в основе проверки по критерию Стьюдента. Впрочем, в данном случае спасает так называемая центральная предельная теорема: с ростом числа точек данных в выборке распределение стремится к нормальному. Если размер выборки составит 10, то ошибки будут небольшими; если же их будет 20 - 30, ошибки будут иметь исчезающе малое значение для статистических заключений. Следовательно, многие виды статистического анализа можно с уверенностью применять при адекватном размере выборки, например при n = 47 и выше, не опасаясь за достоверность заключений.
Что, если существует серийная зависимость? Более серьезным нарушением, способным сделать неправомочным вышеописанное п
...[ ... ]
Практический эффект
Практический эффект этого явления состоит в уменьшении размеров выборки. Если между данными существует серийная зависимость, то, делая статистические выводы, следует считать, что выборка в два или в четыре раза меньше реального количества точек данных. Вдобавок определить достоверным образом степень зависимости данных невозможно, можно только сделать грубую оценку - например, рассчитав серийную корреляцию точки данных с предшествующей и предыдущей точками. Рассчитывается корреляция прибыли/убытка сделки i и прибыли/убытка сделок i + 1 и i - 1. В данном случае серийная корреляция составила 0,2120. Это немного, но предпочтительным было бы меньшее значение. Можно также рассчитать связанный t-критерий для статистической значимости значения корреляции. В данном случае выясняется, что если бы в популяции действительно не было серьезной зависимости, то такой уровень корреляции наблюдался бы только в 16% тестов.
Серийная зависимость - серьезная проблема. Если она высока, то для борьбы с ней надо считать выборку меньшей, чем она есть на самом деле. Другой вариант - выбрать случайным образом данные для тестирования из различных участков за длительный период времени. Это также повысит представительность выборки в отношении всей популяции.
Что, если изменится р ы н о к ? При разработке торговых систем возможно нарушение третьего положения t-критерия, и его невозможно предугадать или компенсировать. Причина этого нарушения в том, что популяция, из которой взят образец данных для тестиро
...[ ... ]
Пример 2: Оценка тестов
Пример 2: Оценка тестов на данных в пределах выборки
Каким образом можно оценивать систему, которая подвергалась подгонке параметров (т.е. оптимизации) по некоторой выборке данных? Трейдеры часто оптимизируют системы для улучшения результатов. В данном аспекте применение статистики особенно важно, поскольку позволяет анализировать результаты, компенсируя этим большое количество тестовых прогонов во время оптимизации. В табл. 4-2 приведены показатели прибыли/убытка и различные статистические показатели для тестов в пределах выборки (т.е. на данных, использовавшихся для оптимизации системы). Система подвергалась оптимизации на данных за период с 1.01.1990г. по 1.02.1995г.
Большая часть статистики в табл. 4-2 идентична показателями табл. 4-1 из примера 1. Добавлены два дополнительных показателя - "Количество тестов оптимизации" и "Скорректировано по оптимизации". Первый показатель - просто количество различных комбинаций параметров, т.е. число испытаний системы по выборке данных с различными параметрами. Поскольку первый параметр системы на лунном цикле, L1, принимал значения от 1 до 20 с шагом в 1, было проведено 20 тестов и соответственно получено 20 значений t-критерия.
Количество тестов, использованных для коррекции вероятности (значимости) по лучшему показателю t-критерия, определяется следующим образом: от 1 отнимается статистическая значимость лучшего теста, результат возводится в степень m (где т- число прогонок тестов). Затем этот результат вычитается из единицы. Это
...[ ... ]
Трактовка
Трактовка статистических показателей
В примере 1 представлен тест с проверкой системы, в примере 2 - оптимизация на данных из выборки. При обсуждении результатов мы возвращаемся к естественному порядку проведения тестов, т.е. сначала оптимизация, а потом проверка.
Результаты оптимизации. В табл. 4-2 показаны результаты анализа данных из выборки. За 5 лет периода оптимизации система провела 118 сделок (n = 118), средняя сделка дала прибыль в $740,97, и сделки были весьма различными: стандартное отклонение выборки составило около $3811. Таким образом, во многих сделках убытки составляли тысячи долларов, в других такого же масштаба достигали прибыли. Степень прибыльности легко оценить по столбцу "Прибыль/Убыток", в котором встречается немало убытков в $2500 (на этом уровне активировалась защитная остановка) и значительное количество прибылей, многие более $5000, а некоторые даже более $10 000. Ожидаемое стандартное отклонение средней прибыли в сделке показывает, что если бы такие расчеты многократно проводились на схожих выборках, то среднее колебалось бы в пределах десяти процентов, и многие выборки показывали бы среднюю прибыльность в размере $740 ± 350.
Т-критерий для наилучшего решения составил 2,1118 при статистической значимости 0,0184. Это весьма впечатляющий результат. Если бы тест проводился только один раз (без оптимизации), то вероятность случайно достичь такого значения была бы около 2%, что позволяет заключить, что система с большой вероятностью находит "скрытую
...[ ... ]
Результаты проверки.
Результаты проверки. В табл. 4-1 содержатся данные и статистические заключения по тестированию модели на данных вне выборки. Поскольку все параметры уже определены при оптимизации и проводился всего один тест, мы не рассматривали ни оптимизацию, ни ее последствия. За период с 1.01.1995 г. по 1.01.1997 г. система привела 47 сделок, средняя сделка дала прибыль в $974, что выше, чем в выборке, использованной для оптимизации! Видимо, эффективность системы сохранилась.
Стандартное отклонение выборки составило более $6000, почти вдвое больше, чем в пределах выборки, по которой проводилась оптимизация. Следовательно, стандартное отклонение средней прибыли в сделке было около $890, что составляет немалую ошибку. С учетом небольшого размера выборки это приводит к снижению значения t-критерия по сравнению с полученным при оптимизации и к меньшей статистической значимости - около 14%. Эти результаты не слишком плохи, но и не слишком хороши: вероятность нахождения "скрытой неэффективности" рынка составляет более 80%. Но при этом серийная корреляция в тесте была значительно выше (ее вероятность составила 0,1572). Это означает, что такой серийной корреляции чисто случайно можно достичь лишь в 16% случаев, даже если никакой реальной корреляции в данных нет. Следовательно, и t-критерий прибыли/убытка, скорее всего, переоценил статистическую значимость до некоторой степени (вероятно, на 20 - 30%). Если размер выборки был бы меньше, то значение t составило бы около 0,18 вместо полученного 0,1
...[ ... ]