ЧТО МЫ УЗНАЛИ?
Лунные и солнечные явления могут иметь реальное влияние на фьючерсные рынки. В случае с солнечными явлениями такое влияние на рынок S&P 500 подтверждено. В отношении лунных явлений влияние явно ощутимо, хотя и не столь постоянно.
Астрономические явления, вероятно, стоит включать в состав сложных торговых систем, например использовать как одни из входов в нейронной сети.
Модели, основанные на подобных явлениях, нуждаются в тщательной подгонке к отдельным рынкам. В пользу этого вывода говорит то, что на индивидуальных рынках системы показывали лучшие результаты, чем при торговле портфелем.
Как другие противотрендовые модели, астрономические модели нуждаются в стратегии выходов с близко расположенными защитными остановками. Если остановка расположена верно, то в благоприятной ситуации она не срабатывает, позволяя позиции накапливать прибыль, а когда прогноз оказывается неверным, остановка быстро закрывает сделку, снижая убытки. Использование близких защитных остановок также может объяснить более высокую эффективность торговли в нашем первом исследовании (Katz, McCormick, июнь, сентябрь 1997).
Учитывая высокую вероятность влияния солнечных и лунных циклов на ряд рынков, стоит обратить внимание на некоторые планетарные ритмы, в том числе на конфигурации и явления, рассматривающиеся сейчас только астрологией.
Методы входа влияют на модели. Например, вход по лимитному приказу не всегда приносит хорошие результаты, а вход по стоп-приказу порой улучшает эффективно
...[ ... ]
Входы на основе циклов
Входы на основе циклов
Цикл- это ритмическое колебание, имеющее определимую частоту (0,1 цикла в день, например) или же, по-другому, периодичность (10 дней на цикл, например). В предыдущих двух главах рассматривались циклические по природе явления. Эти процессы имели внешнюю по отношению к рынку природу и известную, если не фиксированную периодичность. Сезонные явления, например, вызваны сменой времен года, и, следовательно, привязаны к внешней действующей силе. Таким образом, все сезонные явления цикличны, но не все цикличные явления сезонны.
В этой главе будут рассматриваться циклы, существующие исключительно в ценовых данных и не обязательно имеющие какие-либо внешние причины. Некоторые из таких циклов могут объясняться еще неизвестными влияниями, другие могут происходить из резонансных колебаний рынков. Какова бы ни была причина, при рассмотрении практически любого графика можно обнаружить циклические явления. В старину трейдеры использовали для поиска регулярных максимумов и минимумов инструмент в форме гребня, который прикладывали к графику. Сейчас применяются компьютерные программы, позволяющие легко наблюдать и анализировать циклы. В отношении механического обнаружения и анализа циклов наиболее используемой техникой является спектральный анализ на основе метода максимальной энтропии (MESA).
...[ ... ]
ОБНАРУЖЕНИЕ ЦИКЛОВ
ОБНАРУЖЕНИЕ ЦИКЛОВ С ИСПОЛЬЗОВАНИЕМ MESA
В настоящее время предлагается не меньше трех крупных программных пакетов для трейдеров с возможностью применения метода максимальной энтропии для анализа рыночных циклов. Это Cycle Trader от Bresset, MESA от Ehlers (800-633-6372) и TradeCycles (Scientific Consultant Services, 516-696-3333 и Ruggiero Associates, 800-211-9785). Такой анализ используется многими специалистами, например Ружжиеро (Ruggiero, октябрь 1996) сообщает, что адаптивные системы на основе пробоя работают лучше при использовании метода максимальной энтропии (MEM) при анализе циклов, чем без него.
Максимальная энтропия - изящный и эффективный метод определения циклической активности в ряду данных. Особая сила этого метода лежит в его способности определять выраженные спектральные черты в ограниченном объеме данных, что полезно при анализе рыночных циклов. Метод хорошо изучен, и его приложения доведены до высокой степени совершенства в отношении адекватной подготовки и обработки данных, требуемой при использовании подобных алгоритмов.
Однако существует ряд проблем, связанных с методом максимальной энтропии, как, впрочем, и с другими математическими методами определения циклов. Например, метод MEM капризен; он может быть чувствителен к небольшим колебаниям данных или к таким параметрам, как период обзора. Кроме того, для применения метода максимальной энтропии требуется не только компенсировать влияние трендов или дифференцировать ценовые данные, но и пропускать их
...[ ... ]
ОБНАРУЖЕНИЕ ЦИКЛОВ ПРИ ПОМОЩИ ГРУ
ОБНАРУЖЕНИЕ ЦИКЛОВ ПРИ ПОМОЩИ ГРУПП ФИЛЬТРОВ
Мы потратили много времени на поиск другого метода обнаружения и извлечения полезной информации о циклах. Помимо избежания проблем, связанных с методом максимальной энтропии, мы также хотели использовать принципиально новый метод: при работе на рынке новые методы порой имеют преимущество просто потому, что отличаются от методов других трейдеров. Одним из таких подходов является использование групп специально разработанных полосовых фильтров. Этот метод известен из электроники, где группы фильтров часто применяются для спектрального анализа. Использование группы фильтров позволяет подбирать ширину пропускания и другие характеристики фильтра, а также накладывать друг на друга различные фильтры в составе группы. Этот метод позволяет получить быстрый и адаптивный ответ на рыночную ситуацию.
В проведенном нами исследовании рыночных циклов при помощи групп фильтров (Katz, McCormick, май 1997) с 3 января 1990 г. по 1 ноября 1996 г. разработанная нами модель (на принципе покупки на минимумах и продажи на максимумах) вела торговлю на рынке S&P 500 и принесла $114 950 прибыли. Было проведено 204 сделки, из них 50% прибыльных. Общая прибыль составила 651%. И длинные, и короткие позиции имели примерно равную доходность и процент выгодных сделок. Различные параметры модели подверглись оптимизации, но почти все значения пара
метров вели к прибыльным результатам. Использованные на рынке S&P500 параметры были без изменений применены для торговл
...[ ... ]
ФИЛЬТРЫ БАТТЕРУОРТА
ФИЛЬТРЫ БАТТЕРУОРТА
Фильтры Баттеруорта достаточно просты для понимания. Фильтр Бат-теруорта для низких частот подобен скользящему среднему; он сглаживает высокочастотный сигнал ( и л и шум) и пропускает низкочастотные колебания (т.е. колебания с длинным периодом). Если у экспоненциального скользящего среднего отсечка составляет 6 дБ на октаву (т.е. выход с частотой выше отсечки снижается вдвое при двойном снижении периода сигнала), то у четырехполюсного фильтра Баттеруорта (использованного в нашей работе от мая 1997 г.) снижение составляет 18 дБ на октаву (выход с частотой выше отсечки снижается в 8 раз при уменьшении периода сигнала вдвое). Такое резкое снижение ненужного высокочастотного сигнала имеет свою цену: при этом возрастает запаздывание и возникают искажающие фазовые сдвиги.
Фильтр Баттеруорта для высоких частот подобен осциллятору, основанному на разности скользящих средних (например, X- МА(Х), где X - входящий сигнал, а МА(Х) - его скользящее среднее). Оба процесса обеспечивают ослабление низкочастотных сигналов (например, трендов), пропуская высокочастотный сигнал без изменений. Фильтр Баттеруорта обеспечивает более сильное сглаживание, чем осциллятор скользящего
среднего (18 дБ против б дБ на октаву). И осциллятор, и высокочастотный фильтр вызывают сдвиг вперед, а не запаздывание, но при этом возникают искажающие высокочастотные шумы и фазовые сдвиги.
Если соединить высокочастотный и низкочастотный фильтры, подав выход первого на вход второго, получится по
...[ ... ]