Противотрендовые модели
Энциклопедия торговых стратегий














Противотрендовые модели

Противотрендовые модели на основе скользящих средних работали менее стабильно, чем модели следования за трендом. Многие из них демонстрировали меньшие убытки или даже некоторую прибыль в пределах выборки. Вне пределов выборки наблюдалась аналогичная картина, особенно в отношении модели на основе поддержки/сопротивления скользящих средних. За исключением модели расхождения MACD, все осцилляторы приносили большие убытки. Почти всегда они работали хуже, чем случайные входы как в пределах, так и вне пределов выборки. Самой худшей была модель перекупленности/перепроданности RSI. В обеих частях выборки данных убытки при ее использовании были огромными, гораздо больше, чем ожидаемые убытки случайных входов. С другой стороны, сезонные модели были однозначно лучше случайного входа. Хотя только одна из них дала реальную прибыль и в пределах, и вне пределов выборки, две из них были прибыльны вне пределов выборки, а убыток еще нескольких был гораздо меньше, чем ожидаемый убыток модели случайных входов. Результаты простейшей лунной модели были неоднозначными. В пределах выборки большинство тестов показали убыток, который, тем не менее, был лучше ожидаемого убытка случайных входов. При этом модель на пресечении лунных средних была однозначно лучше случайного входа как в пределах, так и вне пределов выборки. Хотя солнечные модели в пределах выборки работали лучше случайного входа, вне пределов выборки результаты были неоднородными и изменчивыми. Это также относится к моделям на основе циклов. Впрочем, циклические модели при входе по лимитному приказу или по цене открытия в последние годы работали гораздо хуже, чем случайные входы. Как и в случае с моделями на основе пробоя, оптимизация здесь не играет роли; значимый уровень подгонки под исторические данные был обнаружен только в генетических моделях и нейронных сетях. Из-за огромного размера образца данных оптимизация одного-двух параметров, необходимых для большинства моделей (за исключением генетической и нейронной сети) давала минимальный эффект "вредной" подгонки. Как ни странно, модели на основе нейронных сетей довольно часто показывали неплохие (лучше случайных) результаты вне пределов выборки. В пределах выборки, естественно, эффективность нейросетей была потрясающей. Мы проводили коррекцию коэффициента корреляции, но и после коррекции корреляция оставалась значимой, сохраняя вне пределов выборки ощутимую реальную прогностическую ценность. Результаты правил, разработанных с помощью генетических алгоритмов, были самыми лучшими. Великолепная эффективность, полученная в пределах выборки, сохранялась в длинных позициях и на данных вне выборки. Назад

На сегодняшний день 99% кондиционеров используют фреон R22. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Hosted by uCoz